e

NASA Technical MemofarEdum 4027

On the Diagnostic
Emulation Techijique
and Its Use in th¢
AIRLAB =

Gerard E. Migneault

OCTOBER 1988 e

() dibr LIAGNCET C EFULAILCAH
LSk IM TEE B1.1AE (NASA)
C3CL 09B

(MAGA-iF=-4ucT)
TeLHENIUE AML QL7:
<t p

hoa-lusix

Unclas
01669:8

Hi/00

0t 4 im0 0 o e ot O o e el S S A i 0

NASA Technical Memorandum 4027

On the Diagnostic
Emulation Technique
and Its Use in the
AIRLAB

Gerard E. Migneault
Langley Research Center
Hampton, Virginia

NASA

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

M@mwmmmmnw :

s

NASA Technical Memorargum 4027

s
R T I MR
s

On the Dlagnostéc
Emulation Tec f:r;lque

=

and Its Use 1n th
AIRLAB

mw-

Gerard E. Migneault

OCTOBER 1988 e

TR g et oy :

(MAGA-1M-due]) Ch Tlhie LIAGMCETIC EFULALLCN hosa=-dul 24
TEUBNIGUE AML L7s L&k IM 1bkE #1il 1AL {NASA)
<t p CsCL 09B

Unclas

Hl/00 0166928

NASA Technical Memorardum 4027

On the Diagnostic
Emulation Technique
and Its Use in the
AIRLAB

Gerard E. Migneault
Langley Research Center
Hampton, Virginia

NASA

National Aeronautics
and Space Administration

Scientific and Technical
Information Division

1988

Preface

This document is intended primarily as an aid for understanding and judging the relevance
of the “diagnostic emulation technique,” developed at the Langley Research Center, to
studies of highly reliable, digital computing systems for aircraft. Therefore, the document
contains a short review of the need for and the use of the technique as well as an explanation
of its principle of operation and its implementaticn. However, details that would be needed
for operational control or modification of existing versions of the technique are described in
NASA CR-178391 by Becher (1987).

The Introductory section contains a description of the need (and origin of the need)
for an emulation technique in the Langley Aviorics Integration Research Lab (AIRLAB).
The section on The Technique contains a concise description of a conceptual algorithm for
emulating a computational process, a more lengthy description of the actual implementation
of the conceptual algorithm, and a summation of :he implemented features of the technique.
Appendixes A to D contain details of the technique.

The document has been organized to be read at the following levels of detail:

1. The main points of the document can be found in the main text alone (presented in
the left column of each page), without reference o the footnotes or appendixes.

2. The footnotes to the main text (presented in the right column of each page) are
intended to either expand upon or clarify a point in the main text, but not to provide more
detail.

3. The appendixes explain how and why specific gate logic algorithms work.

4 There are footnotes to the appendixes presented at the bottoms of the pages)
describing more specific details.

PRECEDING PAGE BLANK “JOT FILMED

iii

\/"

Summary

This document is intended primarily as an aid
for understanding and judging the relevance of the
“diagnostic emulation technique,” developed at the
Langley Research Center, to studies of highly reli-
able, digital computing systems for aircraft. There-
fore, the document contains a short review of the
need for and the use of the technique as well as an
explanation of its principle of operation and its im-
plementation. However, details that would be needed
for operational control or modification of existing
versions of the technique are described in NASA
CR-178391 by Becher (1987).

Introduction

The validation of highly reliable, fault-tolerant
computers is an important and, at the very least,
difficult task in the development of digital comput-
ing systems for aircraft. The reasons are evident.
On the one hand, demand for safety imposes an ele-
vated, minimally acceptable level of reliability on any
system whose failure could cause fatalities; on the
other hand, uncertainty about the relationship be-
tween malfunctions of an aircraft’s computing system
and catastrophes involving the aircraft makes any
precise specification of a minimally acceptable level
of reliability problematic. To be generally accept-
able, any posited, minimum level of reliability of a
computing system must be conservatively elevated to
such an extent that the reliability of currently avail-
able components is inadequate for constructing con-
ventional (i.e., fault-intolerant) computing systems.
Consequently, a need arises naturally for computing
systems designed to tolerate their own (i.e., internal)
faults and malfunctions.!

However, fault tolerance does not obviate the
need for assessing reliability. “Fault tolerant” is
but a cachet for systems designed to continue func-
tioning after some internal (and necessarily superflu-
ous) components cease functioning properly; that is,
the systems are designed to contain and make ad-
vantageous use of redundancies to provide alterna-
tive means of performing their functions.? With lim-
ited resources in a limited interval of time there can
be only a limited number of available alternatives.
Clearly, when the set of alternatives, each fault in-
tolerant, has been depleted, the system fails.? Thus,
and also clearly, a fault-tolerant system has an asso-
ciated level of reliability that must be evaluated to
ensure that it equals at least the minimally accept-
able level.

There is also an added complication that accom-
panies the use of fault tolerance. A fault-tolerant

system could be less reliable than straightforward PREC; DING PAGE
AGE BLAN

1n the literature, the value 1— 10~—9 has become a somewhat
de ‘acto standard for the minimum acceptable level of reliability
of .. civil aircraft’s computing system (for a flight duration of
10 hours) if it performs tasks crucial to flight. For military
air raft, requirements for reliability of computing systems hover
abcut the value 1 — 10~7 for a mission. However, the need
for innovative designs for systems does not arise only from such
ext ‘eme requirements; less stringent levels of reliability would still
be heyond the sure reach of computing systems that are intolerant
of :aults.

To be sure, some critics consider the attainment of
ult -areliability to be infeasible at best and the resulting schemes
for fault-tolerant computers as “redundancy “run amok”” (e.g.,
see pp. 220-222 of Goldberg 1981). For an abbreviated rationale
for the value 1 — 10~9, see Migneault (1980). '

2Redundancy can be physical, temporal, logical, or any com-
bir.ation of these three—physical, as in parallel, replicated mod-
ules; temporal, as in repeated attempts of the same computa-
tional process; and logical, as in dissimilar algorithms for the
sare functions or processes, whether they are implemented phys-
ica ly, temporally, or in combination. Each form of redundancy
ad Iresses some causes of failure better than others.

Of course, once elements are called into play to tolerate
failts, they can no longer be considered redundant; that is,
he:e the meaning of redundancy is conditional on the absence
or presence of faults. For an exposition of fault tolerance—one
wt ich, however, lacks a satisfactory discussion of the relationship
to reliability—see Anderson and Lee (1981).

3Casually stated, the probability that a fault-tolerant system
fai's because of the depletion of its set of alternatives in a stated
int arval of time is equal to the nonzero product of the probabilities
of failure of the separate, needed, redundant resources, with the
as: umption of uncorrelated failures. (“Casually stated,” because
th. word failure is used loosely here to encompass both an event
(i.-., a component becoming a failed component at a particular
in: tant) and a state (i.e., a particular, failed condition in which
th component is assumed to operate only improperly). More
co rectly stated, however, a failure is only an event. Moreover,
in general a failed state does not imply necessarily improper
be 1avior; it is, rather, the unfailed state that implies necessarily
proper behavior.) Note also that the probability of failure of
an alternative includes the possibility that its function is not
pe-formed within specified intervals of time, even in the absence
of any tangible failures. That is, consistent with footnote 2, an
in- erval of time can be considered to be effectively a consumable
re- ource.

consideration of its set of redundant resources might
reveal because, in addition to the redundant re-
sources, a fault-tolerant system contains a means
(here called “the mechanism”) for composing the sys-
tem’s output from the outputs of its parts, whether
or not some are faulty. In effect, the mechanism em-
bodies the intelligence by which redundancy is put
to effective use to provide the fault tolerance that is
intended to increase reliability. Yet, the mechanism
also contributes to lessened reliability in two ways;
one of these is difficult to evaluate. First, there is
the conventional effect upon reliability of an added,
fault-intolerant component, that is, the mechanism.
Evaluation of this effect poses no different challenge
from that due to any other component of the sys-
tem; indeed, fault tolerance can be designed into the
mechanism also.? More difficult to evaluate, however,
is the probability that a mechanism’s design is flawed,
so that in some situations it will not respond prop-
erly to some failures of components despite the avail-
ability of functioning, alternative resources. That is,
what is at issue here is the possibility that there are
modes of failure that have been overlooked or incom-
pletely understood by designers of the system. But
how does one estimate the probability of things un-
thought of 7%

Ordinarily (i.e., for pedestrian, fault-intolerant
systems for which reliability requirements are suffi-
ciently benign), enough testing of the systems can be
performed without knowledge of internal structure
(i.e., “black-box” testing) to justify an assumption
that the effect of any residual design flaws on re-
liability is negligible compared with chance failures
resulting from degradation of components. Thus, or-
dinarily, the problem of design flaws is handled by the
elimination of such flaws as they are discovered—that
is, by the removal of all but the {assumed) statisti-
cally insignificant, unobserved flaws from the system.
If, however, they are to be even only approximately
achieved, the elevated levels of reliability required,
the raisons d’étre, of fault-tolerant systems preclude
the possibility of generating enough data by black-
box testing of systems to justify the same assumption
with the same credibility, with the same statistical
methods.®

As a substitute for sufficient, complete, and
exhaustive—hence, infeasible—testing of such sys-
tems, more sophisticated methods of analysis are
used, namely, techniques of modelling and analyz-
ing the behavior of complex systems as stochastic
processes. Models are constructed to represent the
behavior of systems by an identification of the possi-
ble, significant states systems could assume and by a

similar identification of significant transitions among_

the states. (In particular, transitions representing

2

4Here is an instance of what might be called “redundancy run
amok” (see footnote 1), for redundancy within the mechanism
appears to call for either a recursively functioning mechanism
or a meta-mechanism overseeing use of the redundancy within
the mechanism—and where is fault tolerance to end? For a
resolution, see the use of local and global executive functions
in the SIFT (Software Implemented Fault-Tolerant) computer
system described by Wensley et al. (1978).

54 design flaw in the mechanism is more pernicious than a
simple, latent fault that, be it a design flaw or a physically de-
graded component, lies dormant until an unlikely situation awak-
ens it. Such latent faults can by chance surface effectively simul-
taneously with other faults and become part of a simultaneous-
failure (i.e., multifailure) event—but not necessarily. Design flaws
in the mechanism, however, belong to the more special class of
latent faults that become active when, and only when, certain ac-
tivating failures occur; therefore, such flaws necessarily are part
of multifailure events—events for which, by the nature of the de-
sign flaws, no fault-tolerating mechanism has been specifically
designed. Thus, although the rates of occurrence of failures may
have been estimated and turned into estimates of the rate of
depletion of viable alternatives, estimates of the probability that
a fault-tolerant system will continue to function after simple fail-
ures remain problematic and involve an additional analysis of a
conditional probability called a coverage function.

6A test rig containing 1000 independently operating, highly
reliable fault-tolerant systems serviced approximately every
10 hours to replace failed components can be expected to function
for decades (the number depending upon the specific reliability
criterion) before even the first system failure will be seen. Clearly,
neither such a number of systems nor the time on test would be
economically feasible, and any feasible amount of testing would
be inconclusive—unless, of course, the systems failed miserably.

malfunctions of the fault-tolerance mechanisms can
be included). The stochastic nature of a system’s be-
havior due to the chance presence or absence of faults
is then represented in the form of parametric, func-
tional expressions associated with the (conditional)
probabilities of the various transitions. One benefit
gained by the use of the models is evident. Assess-
ment of a systems’s reliability is reduced to the solu-
tion of mathematical equations implied by the corre-
sponding model’—but only after a leap of faith has
been made. One must believe that a model faith-
fully expresses the stochastic nature of the system
in question, for although precise statements can be
made about the accuracy and precision of the math-
ematical techniques, the credibility of any reliability
assessment hangs upon the inaccuracies and impre-
cisions of the models.

Thus, the determination of the inaccuracies and
imprecisions of a model becomes an important task
to which testing and experimentation can (indeed
must) be applied. Now, however, testing can be selec-
tively focused to obtain, verify, or clarify knowledge
of those states, transitions, and associated functional
expressions that are most significant or uncertain in
the model. The nature and number of faults to be
considered in the analysis of highly reliable systems,
however, still make testing on actual systems imprac-
tical. Consequently, it is convenient to use abstract
representations, such as computer simulations, as
surrogates for the real systems.® Clearly it is advan-
tageous that a surrogate truly represent the internal
structure of the system being analyzed, for then, if
instrumented enough, a surrogate can serve not only
as a generator of data from which the parameters of
the functional expressions can be estimated but also
as a serendipitous means of unearthing unanticipated
behavior (i.e., a means of finding unforeseen transi-
tions not included in the stochastic process model).

Some History of This Implementation

The core of the technique, the gate logic level
algorithm described in the following sections, was
first implemented in 1976 as a computer prograim in
FORTRAN on mainframe computers in order to ver-
ify (and demonstrate) the correctness of the algo-
rithm in emulating a complete processor running
its own program. A (hypothetical) 16-bit micro-
processor was specially defined to play the role of a
computer being emulated, and a program was defined
and coded in the instruction language of the hypo-
thetical microprocessor. After the successful verifi-
cation of the algorithm, the computer program and
the hypothetical microprocessor were immediately
used to perform a small pilot experiment in “stuck-
at” fault detection.® Subsequently, the feasibility of

7CARE III and SURE, for example, are computer codes
de- eloped for NASA for analyzing a large class of such models.
Sec Bavuso and Petersen {1985) or Butler (1984}

8There are two obvious advantages to the use of abstract sur-
ropates: they involve no physically destructive failure actions, and
the y can be automated on computers (and thus require less setup
tir e between failure cases—possibly the most time-consuming as-
pe-t of laboratory experimentation). The disadvantage, of course,
is -hat they require an additional level of verification to be sure
th it they are truly surrogates for the systems under study.

9For a description of the experiment and its results, see Nagel
(1178).

speeding up the algorithm by the use of a horizon-
tally microprogrammed computer was examined in
a contractor facility having a horizontally micropro-
grammable computer, and a survey was made of can-
didate microprogrammable computer systems.0

The technique has also been used to emulate
the CPU of a Bendix BDX-930 processor,!! the
processor used in the SIFT system. (See Wensley
et al. 1978.) As the emulation was an in-house
project to evaluate implementation of the technique
on the horizontally microprogrammable computer (a
Nanodata Computer Corporation QM-1a computer)
at the Langley Research Center (LaRC) rather than
a study of the BDX-930 processor, it was not docu-
mented for public dissemination. The project demon-
strated that the version of the emulation technique
implemented on the horizontally microprogrammable
computer is about 35 to 40 times faster than an
equivalent version implemented on a Digital Equip-
ment Corporation VAX-11/750 computer (the gen-
eral purpose computer in AIRLAB) and is approxi-
mately 2 x 10* times slower than the actual BDX-930
processor.

The version of the emulation technique on the
VAX-11/750 computer has since been used in a con-
tinuing university grant study of gate-logic fault
behavior, a study actually performed by graduate
students using the technique remotely.1? Recently,
the technique has been used to evaluate the self-
diagnostic capability of the fault-tolerant voter mod-
ule of a fault-tolerant processor design study.!3

The Technique

General Concept

The computational process in a logic network
can be considered to be a process of successive, re-
lated perturbations in a medium that is almost in
equilibrium.!? As a result, the emulation task can be
viewed as a task of generating the successive states of
such a perturbation process. This view has two use-
ful properties. First, since elements that remain in
equilibrium at an instant in a perturbed medium are
not active components of the perturbation process at
that same instant, an algorithmic representation of
the process is an efficient scheme for simulating be-
havior of a network—if most of the network’s pattern
of signals is in equilibrium at most instants of time,
as is usually true for a logic network. Second, since
the data anomalies caused by external agents and
the effects of physical failures also appear as pertur-
bations (albeit seemingly spontaneous from the view-
point of a computational process!® and, in the case of
physical failures, more precisely considered as meta-
perturbations!6), an algorithmic representation of a

4

10The feasibility study and survey are documented in Martin
Marietta (1981). The survey of candidate microprogrammable
computer systems appeared in the form of an interim report
several years earlier and served as a basis for procurement of
the microprogrammable computer used at the Langley Research
Center (LaRC). The interim report appears as attachment 1 of
Martin Marietta (1981).

11The BDX-930 CPU contains 3000 to 4000 gate equivalent
devices. The gate-logic description of the processor was obtained
from Bendix Corp. and is documented in Swern and McGough
(1982). Of course, the gate level description is now also avail-
able directly from the computer files that serve to input to the
emulation technique.

12Initia.lly the study concentrated upon the error propagation
from the gate to the pin level on a chip. The study is described in
Lomelino and lIyer (1986). In the continuing study, the emulation
technique was interfaced with a circuit-level simulation in order
to examine error behavior in finer detail.

13The analysis of the self-diagnostic capability was done
at Research Triangle Institute and is documented in Baker,
Mangum, and Scheper {1988).

14Phe notion that computation in a logic network is analo-
gous to a perturbation process comes from the following obser-
vations. First, it is possible to describe a logic network in terms
of elementary devices (e.g., logic gates or transistors) which con-
stantly {attempt to) maintain an output signal consistent, in some
prescribed manner, with their input signal(s). That is, each de-
vice acts as a local equilibrium-restoring force. Moreover, there
is some time delay, however small, between the occurrence of
a change in an input signal and a related change to an output
signal—in light of which the value of a device’s output signal
may be considered to be a reaction after a discrete interval of
time to a perceived inconsistency between its output and input
signals. Consequently, a pattern of output signals of the devices
in a network is clearly in equilibrium when the output signal
of each (and every) device is consistent with its input signal(s).
Furthermore, in the absence of seemingly spontaneous effects or
arbitrary changes to signals caused by external agents or devices,
since every input signal is an output signal of some device, there
is no mechanism to disturb equilibrium. Second, the notion of
computation within a network is incompatible with the notion
of undisturbed equilibrium. Therefore, computation implies that
there must be at least some local instance(s) of disequilibrium
(i.e., inconsistency) somewhere in the pattern of signals. However,
as noted, the nature of the elementary devices is to react to ev-
ery local instance of inconsistency, eliminating the inconsistency
but necessarily further perturbing the pattern of signals in the
process. Thus, computation proceeds as a process of successive,
related perturbations about an elusive condition of equilibrium.

15While the term “spontaneity” of perturbations due to
failures and anomalies implies that they do not arise from
mechanisms within the computational process, it is only the
initial, “spontaneous” perturbations that are the doings of a
deus ex machina. Subsequent perturbations, if any, arise from
the mechanisms of the computational process.

l6“Meta.—perturbations” correspond to sudden, spontaneous
changes to the rules of the process; perturbations, whether spon-
taneous or not, do not. Meta-perturbations occur because the
logic network is suddenly, “spontaneously” different as the re-
sult of a physical failure (or failures). There may or may not be
accompanying perturbations.

perturbation process easily accommodates the inclu-
sion of failures and anomalies into a simulation.

Algorithmic representation of the perturbation
process is conceptually straightforward:

From two lists of future perturbations (one
list, constructed by this very algorithm, in
which each item describes a perturbation and
its time of occurrence; a second list, created
externally, in which each item describes a
“spontaneous” perturbation, or meta-
perturbation, and its time of occurrence) all
items with a common, earliest time are ex-
tracted. This time is recognized to be, by con-
struction, the present moment, the “now,” of
the perturbation process. The extracted items
represent the state of the process at the mo-
ment (plus any meta-perturbations represent-
ing effects of physical failures also occurring at
the moment).

Then, all consequences of any meta-
perturbations just extracted are determined —
from rules!7 that are either contained in a sep-
arate list of rules governing perturbations or
specified within the identification of the meta-
perturbation itself. Since meta-perturbations
represent changes to the rules governing the
perturbation process, their primary conse-
quences are modifications to some of the items
in the list of rules. Secondary consequences of
meta-perturbations are related perturbations
that are added, as a function of their time
of occurrence, either to the list of future per-
turbations or to the set of perturbations just
extracted. (Some of these new perturbations
may simply cancel out perturbations already
listed.)

Finally, all consequences of the perturba-
tions in the set just extracted (and possibly
just augmented) are determined from the rules
(possibly just modified) and added to the list
of future perturbations. (Again, some of these
new perturbations may simply cancel out per-
turbations already listed.)

Repeated use of this algorithm can generate the
successive states of the perturbation process. Con-
ceptually! Note that the algorithm only ezxtracts
items from the list of spontaneous perturbations.
However, there is nothing to prevent items from be-
ing added by another mechanism, say, another algo-
rithm playing the role of a deus ez machina. (See
footnote 15.)

The algorithm accommodates as fine a fidelity
of representation as desired—at a cost, of course.
Indeed, the algorithm includes, as a special case,

17Each rule is simply an algorithm for modifying itself or
 ther rules in the list of rules governing perturbations, or it is
#n algorithm for computing whether or not the current output
cignal of a connected, elementary device is consistent with its
(newly changed) input or will be perturbed at some future time.

Note that the logical values of the output signals of elemen-
1ary devices (i.e., as seen by a computational process) correspond
15 mutually exclusive ranges of some physical property (e.g., an
-utput voltage) of the devices. By construction, the number of
Irgical values of a device’s output signal is finite. For example,
‘a1 Boolean logic the number is nominally two, corresponding to
"*RUE and FALSE.

Of course, real hardware is somewhat more involved than
- he unequivocal definitions of Boolean logic imply. Since in any
eal device there will be some internal signal noise, there must
ye an allowance made for a finite separation between two ranges
hat carry the logical values—if the meaning of the ranges is to
ve unequivocal. From the point of view of Boolean logic, such
\n intermediate range has no meaning and its existence is not
ecognized. Yet it is there. Clearly, in changing from one logical
tate to another (say TRUE to FALSE), the output signal of a
levice must, however fleetingly, take on values in such a region
f limbo between TRUE and FALSE. Hence, a more faithful
nodel of the physical behavior of an elementary device (say a
iogic gate) would have to account for such a “meaningless” range.
some simulation schemes do. Indeed, some simulation schemes
onsider subdivisions of this “meaningless” range in order to
epresent different, possible characteristics of transitions between
he ranges that carry the logical values.

Although the conceptual algorithm accommodates simulation
ietails down to the level of differential equations (actually, repre-
.entation by difference equations) of electrical circuit analysis, the
mplemented versions of the gate logic algorithm within the diag-
10stic emulation technique do not model the transition phase be-
ween the two {Boolean) ranges of the output signals of properly
unctioning devices. That is, a device’s output signal is considered
o be either greater than a certain threshold level, representing
me of the logical values, or less than a lower level, representing
he complementary logical value. With the exception of one de-
sice, the tri-state, the possible occurrence of an output signal that
orresponds to neither TRUE nor FALSE is considered faulty be-
qavior and accommodated separately. For the modelling of the
ri-state device, see appendix C.

The preceding discussion does not mean that the imple-
nented versions cannot accommodate fine detail. They can, but
.0 do so they require additional “user definable” functions, as
{escribed in the next section.

simulation according to the differential equations of
electrical circuit analysis. (See footnote 17, especially
the last two paragraphs.) That is, fidelity can be
increased by subdivision of the elementary devices
nto ever more elementary subdevices (i.e., by iden-
tification of more possible perturbations and more
perturbation rules). Such a process of refinement
leads eventually to a set of relationships correspond-
ing to difference equations representing the differen-
tial equations for currents and voltages in elements
of the electrical circuits that compose the network.
But, of course, such a refinement would mean that an
interval of simulated time would contain more events
(perturbations) whose consequences would need to
be determined, and more resources would be required
for the simulation. In general, therefore, simulation
at the level of differential equations is feasible only
for networks that are quite small.

Note, however, that from the perspective of a per-
turbation process there is no need to impose a uni-
form level of fidelity of representation over an en-
tire logic network. The trade-off between fidelity
and resources (mainly real simulation time) can dif-
fer for different portions of the network being sim-
ulated simply by appropriate definition of the per-
turbation rules that apply to the various devices of
the network. Moreover, the rules can be varied by
the meta-perturbation mechanism. That is, there is
naturally embedded within the algorithm a means of
dynamic control of multiple levels of fidelity across
a network in order to minimize resources needed at
every moment during the simulation.

Implementation

The diagnostic emulation technique actually con-
sists of several algorithmic schemes which, although
highly intertwined, are separately describable accord-
ing to their distinct functions. Similarly, there are
several data structures that are shared by the coop-
erating algorithms. The technique derives its name
from one of the schemes, admittedly not the most
central of the algorithms, that simply emulates a net-
work of logic gates and flip-flops (and a few other
devices). At the gate level of description, local man-
ifestations of many isolated physical defects can be
represented as logical symptoms!8 that can then be
inserted into an emulation to determine their subse-
quent effects upon the rest of a digital system without
having to increase the level of detail. The identifi-
cation of potential physical defects and their corre-
spondence to logical symptoms is not, however, an
element of the diagnostic emulation technique; it is,
rather, a precursory task.

An equally significant feature of the technique
is the algorithmic scheme for linking combinations

6

18Possibly the most widely discussed type of fault is the
“stuck-at” fault, that is, when a physical defect is determined
to affect a gate by causing its outputted quantity to be stuck
at some value and is interpreted, on the logical level, as a
particular logical value. The stuck-at fault is popular because
it is convenient to handle, simulate, analyze, etc. Admittedly it
is not adequate for representing the manifestations of all physical
defects of digital systems. For example, logical representations of
some (not necessarily extensive) defects can call for redefinitions
of significant portions of the networks of the logic devices,

of emulation and simulation algorithms.19 From the
previous discussion of the conceptual algorithm, it
should be clear that various parts of a system can be
represented at different levels of detail (as appropri-
ate to an efficient use of the emulation technique).
However, the efficiency of this multilevel feature de-
pends upon the use of particular data structures,20
called “actions,”?! that govern the scheduling and
occurrence of events. While some actions are pre-
defined (e.g., those for simulating fetching from and
storing into memory), the data structures have been
chosen, among other reasons, to allow the creation
of new actions by users and, thus, the creation of
new fault and failure types and linkages for inter-
facing other emulation and simulation schemes when
desired.

Figure 1 shows the major functional groupings of
the algorithms that comprise the technique. Their
titles are clearly descriptive. Also clearly, emulation
at the level of gate logic is only one element; it is
capable of playing a principal or secondary or even
minor role in emulations and simulations.

Notice that in addition to the algorithms that
function during the emulation process, the technique
includes preprocessing functions—-for translating de-
scriptions of systems to be analyzed into the formats
of the necessary data structures, for automatically
generating consistent sets of initial values for the out-
puts of the devices of systems, and for generating the
data structures used to map (i.e., associate) emulated
and simulated hardware to the hardware of the real
host system.

Functional
emulation Event- Run options
algerithms * scheduling ;
and simulations D algorthm)
;

Data structures

describing-
networks Hardware
Gate logic Actionrevent parturbations description

actions/events
embedded S/W
taults

external 'O and
diagnostics

emulation
algerithm

intagration translation

algorithm

Emulated/real
.
Electrical . host hardware
circult interfacing
simulations

algornthms

Emulation process algorithms Preprocess algorithms

Figure 1. Components of diagnostic emulation technique.

The gate logic algorithm uses five data structures
to represent a logic network and its behavior: two
contain perturbations, one contains output signals,
one contains network structure, and one contains
pseudo registers. The two smallest structures each
contain a list of perturbations occurring at an instant

19Questions often arise about the nuances of the words
em::lation and simulation. In general usage, both words denote
the imitation of one person, thing, etc., by another; simulation,
hov-ever, especially connotes likeness, whereas emulation connotes
betierment. In computing matters, simulation is the general,
no specific term. For example, in a general sense, CARE 1II (a
rel’ 1bility analysis code; see Bavuso and Peterson 1985) simulates
the failure process of a system. Obviously, no real physical
failures occur; there is a limit to the verisimilitude of a simulation.
Sir iilarly, when a computer code written for one computer (A) is
intrpreted by code in another computer (B), so that computer B
pre duces the same results (when viewed by an external observer)
as would computer A, then computer B is said to “simulate”
coraputer A. However, there is a special case in which computer B
pe forms in an algorithmically identical fashion each internal
op-ration that computer A would perform. This special case is
ca led “emulation.” It is most efficiently achieved by microcoding.

Other things being equal, one would expect microcoded em-
ul: tion to provide for faster operation and simulation to provide
for easier implementation. Other things are not always equal.

Modern computers whose instruction sets are defined by mi-
er code in the hardware are simply emulations, simply roles acted
ott to a microcode script by the underlying hardware. At a mo-
m nt’s notice, the script could change and the actors could take
or other roles. Thus, a manufacturer can offer a seemingly new
cc nputer by merely changing the internal microcode—without
ht ving modified one element of the underlying hardware.

20For items of information in a computer to be manipulated
m-aningfully, they must be organized (i.e., logically ordered)
in a manner consistent with the rules, the algorithms, that
g« vern their manipulation. The rigid orderliness of the items of
information in a computer is what is referred to by the term “data
st -ucture” in the jargon of computer science. There is always a
< nsideration of efficiency (of operating time, of memory space,
elc.) in the joint choice of data structures and algorithms.

21 «Actions” are particular data structures of the diagnostic
ernulation technique that specify mappings (i.e., correspondences)
between data structures (that may themselves be actions) and
control the sequences of algorithms that transform and transfer
dita among the data structures. Such data transformations and
t- ansfers constitute “events,” both emulated and real. Actions
s hedule actions to occur at future times. (And so, indirectly,
t ey schedule the occurrence of events.) Actions control the
t ansfer of information among different data structures of the
e aulation and the real, host hardware; they control the insertion
{r removal) of faults and control the recording of diagnostic
chservations. For example, the mapping of one or more words of
e nulated memory to the real host memory is information specified
v an action that performs the fetching of data from an emulated
¢ »mputer’s simulated memory. Thus, a set of actions controls the
r inning of an emulation.

of time; one corresponds to the present moment
to, while the other corresponds to a future time
to + 6t, where 6t represents the time required to
propagate the perturbations identified in the first
list through the bank of devices identified in the
second list. The data are, of course, simply the
identifications of devices whose output signals change
value at that instant in time. In terms of the general
perturbation algorithm previously described, these
two data structures represent subsets, respectively,
of the list of extracted items and the list of future
perturbations.?? The third data structure contains a
description of the complete pattern of output signals,
that is, the state of the computational process in
the logic network. The fourth data structure is the
largest and contains a description of the network’s
structure, its devices, and their interconnections. In
terms of the conceptual algorithm, this fourth data
structure contains some (but not all) of the rules of
the perturbation process. In particular, it contains
those related to the topology of the network.

The gate level algorithm contains the animus for
the process; that is, it contains, within its construc-
tion, the definitions of the equilibrating action of the
different types of elementary, scalar-valued devices,
regardless of where they appear in a logic network.
The set of such devices consists of the various logic
gate types (AND, OR, NAND, NOR, XOR, XNOR),
inverters, buffers, flip-flops,23 and tri-state devices.?4

It is clear that the gate level algorithm and the
fourth data structure contain a portion of the list
of the perturbation rules (i.e., those pertaining to
gate logic level devices) of the conceptual algorithm.
From the perspective of the gate logic algorithm,
the rules are unchanging since a network’s structure
is ordinarily unchanging: accordingly, the gate logic
algorithm alters only (dynamic) signal information
and contains no logic for altering static network-
structure information.2%

The gate logic algorithm operates only upon de-
vices within a prescribed logic network (ie., that
identified by the fourth data structure)—which may
(or may not) represent the entire system being emu-
lated. Perturbations (signals) that come from outside
the prescribed network (as in fig. 2) appear “spon-
taneously” in the first data structure (i.e., the one
containing items of time tp), and the gate logic al-
gorithm operates in the manner of that portion of
the conceptual algorithm that is ignorant of sponta-
neous perturbations. (Appendixes A to D contain
finer details of the algorithm and the modelling of
the elementary devices.)

On the other hand, signals leaving the prescribed
network go into a fifth data structure that contains
fictitious (register) devices. These registers serve to

8

22Here are two constraints on—and therefore, two possible
enhancements of—emulation imposed by the existing versions of
the diagnostic emulation technique. First, the existing versions
(i.e., on the VAX-11/750 and the QM-1/A computer) treat the
instant g + 6t as the next earliest time in the list of future
perturbations and, hence, constrain the granularity of simulated
time. But the fidelity of a simulation can be adversely affected
when the granularity is too great (namely, when the order of some
events that are in reality sequential is of some consequence, but
the events appear to be simultaneous because of the granularity
of simulated time). This is indeed possible since the logical
values of the input signals of the devices correspond to ranges
of some physical property, as do the values of output signals
(see footnote 17), and it is virtually impossible that any two
devices having an input signal from a common source could
recognize exactly the same value of the physical property to be
the edge of a range. That is, when examined at a fine enough
granularity of time, one of the two devices will be seen to recognize
a change in the input signal common to both devices before
the other device does. Hence, at a fine enough granularity of
time, no perturbations are simultaneous. In some circumstances,
therefore, it can be necessary to consider events intermediate in
time between tg and tg + 6¢. In the existing versions, this is only
possible by the introduction of fictitious devices—admittedly an
inefficient ploy. However, the list of future perturbations exists
also in another data structure not used directly by the gate level
algorithms. It would be possible to modify the manner of use of
that data structure in conjunction with the gate logic algorithms
to obtain a finer granularity of time—without having to introduce
fictitious devices.

Second, the restriction to these two data structures means
that all devices are assumed to have the same propagation time,
namely 6t. Although this assumption can be relaxed in existing
versions of the technique (again by the insertion of fictitious de-
vices), this is again a cumbersome method, and a more efficient
method for avoiding the assumption of a single, common propa-
gation time would be to increase the number of data structures
containing the lists of perturbations from two to some larger num-
ber that would be unlikely to be exceeded. Of course, the most
general method would dynamically determine the precise number
of data structures needed.

23More precisely stated--as implemented the flip-flop portion
of the algorithm handles “halves” of flip-lops. See appendix B
(footnote 34) for an explanation of the manner and reason.

24 Another basic logic device is the bidirectional switch el-
ement. Because of an oversight in the implementation of the
diagnostic emulation technique, no definition of the equilibrating
action of the switch element was included in the gate logic al-
gorithm. However, such switch elements can be represented—in
either of two ways. Within the gate logic algorithm, a switch can
be represented by a fictitious network constructed from the avail-
able elementary devices. Or, external to and interfacing with the
gate logic algorithm, a switch can be represented by a specially
created action. Admittedly, both representations are inefficient,
especially if many instances of such switches occur in the system
being emulated. Here is another possible enhancement.

250f course, the data are only static from the viewpoint of
the gate logic algorithm portion of the computational process. As
stated previously, physical failures can (and usually do) manifest
themselves as redefinitions of the perturbation rules and as seem-
ingly spontaneous perturbations (i.e., changes to signal values).

As constructed, the gate logic algorithm and its data struc-
tures do not embody all the possible rules of the perturbation
process. Consequently, only those changes to the rules which ex-
press new network configurations are accommodated. However,
this is a fairly large set. For example, it includes all stuck-at
faults.

Signals to and from the world outside the network

(I

The rest of the network
Y B a)

/ % W

ED PRI

Figure 2. Sample network of logic devices.

collect and compress the information to be extracted
from the prescribed logic network. Packed informa-
tion is then available for use by other algorithms.
Note that this information may be an integral part
of the emulated system, or it may be diagnostic in-
formation having no inherent use within the pertur-
bation process. For example, a register may con-
tain data which trigger an “action” outside the gate
level algorithm to simulate (at a functional simula-
tion level) a fetch of data from a simulated memory
location. On the other hand, a register may con-
tain data to be printed (by an action devoted to that
purpose) for use in analyzing the emulated system
or, perhaps, for use in analyzing the operation of the
diagnostic emulation process.

A means for controlling the sequence of events is
central to the diagnostic emulation algorithm. Since
each event is the occurrence of a number of actions
(performed by algorithms), control is performed by
naming the actions to be performed at a given time,
the order in which the actions are to be performed,
the identification of the algorithms that perform the
actions, identification of the parameters and vari-
ables to be used by the algorithms, and by the activa-
tion of the algorithms accordingly. But note that this
control process is precisely the process described in
the conceptual algorithm. That is, the central con-
trol algorithm is merely the implementation of the
portion of the conceptual algorithm that examines
each item within the extracted set of perturbations—
with specific data structures in mind.?% Note that the
meaning of a perturbation item is expanded here to
include functions that control the emulation process
and that the particular data structure used is merely
a list of actions, each one of which contains informa-
tion of the sort stated in the preceding paragraph.?’
The central control algorithm invokes each action in
turn. The last action in the list is (almost) always
one that advances simulated time to the next ear-
liest time taken from a list of future events (i.e., it

26The data structures consist, in general, of linked lists em-
b.dded within linked lists embedded within linked lists, etc. It is
irstructive to note that the algorithmic and data structuring tech-
n ques used here, when taken in combinations, form compound
agorithms (and data structures) that are sometimes recursive,
s.metimes merely (if maddeningly) convoluted, and very often
t dious. In other contexts (e.g., in artificial intelligence, in ex-
p 'rt and knowledge-based systems, etc.), complex combinations
o these same techniques often take on an aura of mystique. But
i1 dividually they remain quite straightforward.

27The data structure of an action is akin to that of a
c mputer instruction. That is, it has a tag by which it can be
aldressed (usually a time tag), an operation code that specifies
t 1e action it is calling for, and operands that identify which
variables are to be involved in the action. In this general format,
a1 action is capable of many things. For example, there is an
a‘tion that examines fictitious registers in order to determine
v hich other actions are being invoked by, say, the gate logic, by
a1 external signal originating, say, from an operator’s keyboard,
¢ - even by another action.

in effect supplies a new, extracted set of actions for
the central control algorithm to invoke). Thus, the
central control algorithm appears to find an endless
list.

The event-scheduling algorithm is invoked by its
corresponding action. Its function is to insert other
actions into a list of future events. The data structure
is that of a linked list. It accommodates the insertion
of events at times not yet in the list and the insertion
of events at times for which other events are already
identified.

The emulated/real host hardware interfacing
algorithms provide the means of using the real hard-
ware of the host computer to perform emulated func-
tions. They map data structures that contain de-
scriptions of (portions of) the emulated system onto
real registers of the host computer. For example, re-
sponding to their corresponding actions, these algo-
rithms transfer data (e.g., diagnostic data) to buffers
and registers for display to users.

Functional-level simulations are provided within
the diagnostic emulation technique to represent the
fetching of data from and the storing of data into
emulated memory. The simulations allow for the
inclusion of time delays and lags. Any number of
additional desired functions can be added by the
definition and addition of appropriate actions to the
list of available actions and the addition of simulation
code to perform the new actions.

No circuit-level simulations are currently pro-
vided within the diagnostic emulation technique.
They must be provided by the users. Of course, they
require the definition of appropriate actions.?8

Summary

There are, of course, many ways of implement-
ing an emulation or simulation. The diagnostic em-
ulation technique is but one particular, algorithmic
process organized about particular data structures.
It has been sub-microcoded on a horizontally micro-
programmable computer as well as coded in
FORTRAN for a general purpose computer. It may
be compared with other techniques as follows:

1. It contains an emulation scheme at the level
of gate logic—in contrast to most available computer
programs for simulating digital networks at the gate
logic level. The diagnostic emulation technique does
accommodate the (add-on) use of simulations (e.g.,
for representing portions of a system at a higher
functional level of detail, such as the instruction
and register transfer level, or, if needed, at a lower
functional level of detail).

2. It is a generic scheme—in the sense that it
uses a fixed algorithm for all networks emulated
at the gate logic level. Indeed, a network’s de-

10

28 This capability has been used once in support of an ex-
periment for a doctoral dissertation. A transistor level model of
a gate logic level device was used as a means of examining the
effects of specific faults at the transistor level (see footnote 12).

scription appears as an input data set. Contrast a
generic scheme to what might be called an embed-
ded network scheme, a scheme that compiles (i.e.,
embeds) a system’s network description into a com-
puter program.

3. It is a hybrid scheme. That is, although
the nominal level of detail is the gate logic level,
the scheme facilitates the representation of different
parts of a digital system at different levels of detail —
usually, for computational efficiency, at a less de-
tailed and more functional level (e.g., memories do
not usually need to be emulated at the gate level),
but also, if needed, at a more detailed level (e.g., a
transistor level description of a device to be faulted).
Flexible extension to other levels of emulation and
simulation is possible by means of user-definable (and
also some predefined) “actions.” (See footnote 21.)
This hybrid extension scheme appears to be a spe-
cial feature of the diagnostic emulation technique.

4. Tt is a quast event-driven scheme. Following
the completion of an event, simulated time is usu-
ally advanced to the moment of the next scheduled
event, but in time steps of predetermined amount
that correspond to the interval of time for logically
(but not necessarily physically) propagating a sig-
nal through a device. For example, in the emulation
scheme, rather than being evaluated at each possi-
ble increment in time, the output of a gate is eval-
uated only when at least one of the gate’s inputs
changes. A similar (scheduling) process is also ap-
plied to more global events. Efficiency is lost, how-
ever, if the scheme is applied to devices with vector-
valued output; for this reason, such devices are better
emulated at a more functional level.30

5. It is a unit-propagation-delay scheme, for the
most part, in its handling of gates. That is, in its
normal mode of use, all gates are presumed to share
the same propagation delay. However, varied delays
can be accommodated by means of the user-definable
actions.

6. It is mainly a binary-valued scheme, since its
principal data structures accommodate only TRUE
and FALSE values for the outputs of its nominal
primitive devices. However, more complex, multi-
state behavior can be accommodated, at a cost in
running time, by the use of the user-definable actions.

7. Finally, it is a sequential processing scheme
as it has been implemented (in FORTRAN for
general purpose computers and in sub-microcode
for a horizontally microprogrammable computer)—
because of the limitations of the host hardware. How-
ever, there is latent parallelism corresponding to
concurrency among events in the system being em-
ulated. Therefore, with some modifications to the
algorithms, advantages could be gained from special
host hardware.

29For analyzing failure events, generic schemes have several
ueoful characteristics that embedded network schemes do not.
The algorithms of generic schemes are effectively independent of
tt e network being emulated and can be implemented directly in
special hardware—under some conditions to an advantage. For
ey ample, special purpose computers (for verifying system designs
b: emulation at the gate logic level) have been proposed (e.g.,
s+ Abramovici et al., 1983), have been developed as one-of-a-
k‘ad machines (e.g., see Pfister, 1982 or Koike et al. 1985), and
h..ve even become commercially available.

Also, since a generic scheme accommodates different network
d- finitions by changes to an input data set, the scheme can
readily accommodate hardware failures that effectively cause a
redefinition of the network being emulated during the course of
a. emulation. Moreover, the network description as a separate
d «ta structure that is directly driving the emulation can always
b readily visible.

An embedded network scheme, on the other hand, would
p esumably require a compilation for each separate network
ad, therefore, additional validation—or its credibility would be
sirained. Clearly, embedded network schemes march to a differ-
e it drummer; they appear to be more suitable to verification and
vlidation of software, for which there is no consideration of fail-
ues in the underlying hardware. As an example, see the TRW
(1980) report.

301y event-driven schemes, following the simulation of an
e ent, simulated time is advanced abruptly to the next (possi-
b y dynamically) scheduled, relevant event(s). No host computer
t me (or resource) is used simulating irrelevant events that occur
d iring the intervening period of time—but at a cost of maintain-
iig a (dynamic) schedule of events. Obviously, there must be
s me means of having foreknowledge of the next event(s). When
sach foreknowledge is not possible, in the simplest scheme that
i not event-driven, simulated time is incremented by predeter-
rined amounts. The consequence is that the complexity of dy-
1 amic scheduling is avoided—but at a cost, namely, the cost of
s mulating each device at each step in time to see whether or not
i s output has changed (i.e., to see whether or not an event has
¢ scurred) in the last increment of time.

The diagnostic emulation technique falls between the two
extremes. Events can be forecast; almost all (fixed) increments
¢f time contain at least one event, but most increments contain
r Jlatively few (of all possible) events, and some kinds of events
¢ wn only be forecast in the immediately adjacent interval of time.

11

Appendix A

Modelling Gates

The algorithm for evaluating and updating
the logical states of gates in the diagnostic
emulation technique uses counters to repre-
sent gates. A network of gates of various
types is represented by an identical network of
counters—akin to a directed graph. The algo-
rithm increments (or decrements) the counters
of the network as their inputs change. The
inputs, of course, come from other counters
and represent the changing output values of
gates (and other devices). However, only a
change of a counter’s value to or from zero
corresponds to a change in the output value of
the gate it represents—and vice versa. There-
fore, only when a transition of a counter’s
value into or out of zero occurs does the al-
gorithm propagate the event as an increment
(or decrement) to other counters indicated by
the network. Consequently, the task of the al-
gorithm is simply to increment (or decrement)
indicated counters, and to indicate which, if
any, other counters are to be incremented (or
decremented) in turn. Repeated use of the
algorithm emulates the behavior, as it varies
with the passage of time, of a network of in-
teracting gates.

The modelling of gates as counters to be incre-
mented (or decremented) as the inputs change is
based on the observation that gates of all types
(namely, AND, OR, NAND, NOR, XOR, NXOR,
NOT, and the simple buffer) may be considered spe-
cial cases of a hypothetical gate (the *XOR gate3!
and its negation, N;’XOR). The equivalence of the
' XOR gate (and its negation), for selected values of
the m and n parameters, to the various types of gates
follows from their definitions. For example, the out-
put value of an AND gate having n inputs is defined
to be TRUE when and only when all n of its input
values are TRUE; otherwise it is FALSE. The out-
put of an XOR gate behaves similarly. As another
example, the output value of an XOR gate is TRUE
when one or the other, but not both, of its two inputs
is TRUE, and otherwise it is FALSE; this is also the
behavior of the output value of a %XOR gate. Thus,

31 The n XOR gate, read “m out of n exclusive or” gate, has
an output value defined to be TRUE when and only when
any m (but exactly and only m) of its n inputs are TRUE;
otherwise its output value is FALSE.

12

a network of the hardware gate types can be con-
ceptually replaced by a network of properly chosen
n XOR gates. (See last paragraph of footnote 17.)
Table A1 contains the set of useful equivalences.

Table Al. Equivalence of Hardware Gates
to 'XOR Gates

Hardware No. of TXOR
gate inputs gate
AND n "XOR

OR n NOXOR
NAND n N7XOR
NOR n O9XOR
XOR 2 IXOR
NXOR 2 NiXOR
NOT 1 IXOR
Buffer 1 1XOR

In turn, an ’XOR gate can be represented by
a counter whose value is the count of the 7*XOR
gate’s inputs that are TRUE at any given moment.
Consequently, when a gate’s output value is TRUE,
the corresponding counter’s value is m, and vice
versa; when a gate’s output value is FALSE, the
counter’s value is some quantity which is not m, and
again vice versa. Clearly, the gate’s output value
changes whenever the counter’s value changes to or
from m. And again, the converse is true. It is also
convenient to represent the current value of a gate by
an extra bit attached to the corresponding counter.
As long as the bit’s value is changed every time the
counter’s value changes to or from the critical value
m, the bit’s value will always correctly represent the
gate’s output value—assuming, of course, that it was
correct initially. Thus, for example, a simple 9-bit
counter can represent an ;'XOR gate with up to
n = 15 inputs (1 bit holds the output value, 4 bits
hold the count, and 4 bits hold the value of the
parameter m, which can be any integer from 0 to 15).

Note that in 2’s complement notation a biased
counter (i.e., a counter from which the value of the
parameter m has been subtracted) also can represent
an 'XOR gate. Unlike unbiased counters, each hav-
ing its own critical value for the parameter m, biased
counters share a common critical value (in particu-
lar, zero) for signalling a change in a gate’s output
value. Biased counters do not need to carry along the
value of a parameter m (since it is always zero) and

therefore need only half as many bits, not counting
the extra bit that holds the gate output value. Con-
sequently, a 5-bit biased counter (now counting the
extra bit) suffices to represent an mXOR gate with
up ton = 15 inputs—clearly an improvement on
an unbiased counter. A 7-bit biased counter would
accommodate up to 63 inputs, a number not often
exceeded in real hardware.

In addition, since the value of the extra bit cor-
responds to the gate’s output value (which is either
0 or 1), the quantity to be added to the extra bit
to change it to its new value is precisely the incre-
ment (or decrement) to be made in other counters
to which, as indicated by the network, the change
must be propagated. For example, to an extra bit’s
value that is 0 (i.e., FALSE) when its biased counter
changes to or from zero the quantity 1 must be added
to yield a new value of 1 (i.e., TRUE). Thus, 1 is ex-
actly the increment to be made in other connected
counters. If the extra bit’s value had been 1 (i.e.,
TRUE) and thus needed to change to 0 (i.e., FALSE),
the quantity to be added would have been —1, a
ready-made decrement. Note that the only opera-
tion on a counter is one of addition; decrementing a
counter happens by the addition of a negative incre-
ment to the 2's complement quantity in the counter.

The preceding paragraphs apply equally to
NTXOR gates when 'XOR is replaced by N'XOR,
and TRUE, FALSE, 1, and 0 are appropriately
interchanged. The two types of gates are naturally
distinguished because the possible combinations of
the values of a counter and its extra bit are mutually
exclusive—as shown in table A2. Moreover, since
the operation on the counters is the same for XOR
and NT"XOR gates, knowledge of a gate’s type is not
needed after the initial values for the counter and
extra bit are determined.

Table A2. Gate Type as Function of
Extra Bit and Counter Values

Gate type for
counter value of —
Extra bit
value Zero Nonzero
0 NT'XOR mXOR
1 mXOR NTXOR

As an illustrative example, consider an OR gate
with the three inputs X, Y, and Z. An OR gate,
of course, is supposed to take on the output value
TRUE when any one or more of its inputs takes on
the value TRUE, as happens, for example, when the

iiput set (XYZ) = (TRUE,TRUE,FALSE). Only
vhen all the inputs have the value FALSE, that
i,(XYZ)= (FALSE,FALSE,FALSE), does the OR
gate take on the output value FALSE. Of the eight
j ossible combinations of values that the input set
(an assume, there is only one that corresponds to the
Ihgical output value of FALSE, a behavior equivalent
o the N*XOR gate with parameters m = 0 and
., — 3. With the notation 1 and 0 for TRUE and
1'ALSE (for then the count of inputs is simply the
« um of their values interpreted as decimal digits), the
. ounter value C(XYZ), as a function of the inputs
- hat have the value 1 and the bias amount m is

C(XYZ)=X+Y +Z-m

Note that the counter can only take on the values
), 1, 2, or 3, and only one value of the counter
orresponds to the output value 0 (and, in fact,
t is the count value 0), while all other counter
‘and count) values correspond to the output value 1.
Therefore, knowledge of the count is equivalent to
knowledge of the value of the OR gate’s output.
As the counter changes from one nonzero value to
another (e.g., from 2 to 1), the output value remains
anchanged; it only changes value when the counter
transitions to or from 0.

Consider that initially X = Z = TRUE and Y =
FALSE (ie., (XYZ) = (101)). Then,

C(XYZ) = C(101) = 2

and, since the output value of the OR gate is TRUE,
the extra bit must be 1.

Now imagine that the input set changes to
(XYZ) = (100) (i.e., AZ = —1). The counter takes
on the value

New count = Old count + AX + AY + AZ
=C(101)+0+0+ (-1)
=2+0+0-1

Since the counter has not transitioned to or from 0,
the extra bit is not changed. But this is exactly the
result that would have been determined from

C(100)=X+Y +Z-m
=14+0+0-0
=1

where also the extra bit would be 1 since the output
value of the OR gate is TRUE.

Imagine again that the input set changes, this
time to (XYZ) = (000) (i.e., AX = —1). Then,

13

New count = Old count + AX + AY + AZ

= C(100) + (-1) +0+0

=140+4+0-1

=0
Since the count has changed to zero, the extra bit
must change. It was 1; it becomes 0. The biased
counter’s value becomes 0 with extra bit 0. A
moment’s reflection reveals that this is the proper
value. And since the extra bit has changed, an
increment of —1 will be propagated to other counters.

In summary, a real hardware gate can be rep-

resented by an '’XOR gate (or its negation) with

14

properly selected values of the parameters m and
n. In turn, an 7'XOR gate (and its negation) can
be represented by a biased counter (in 2’s comple-
ment notation) with an extra bit. After initial val-
ues for the counter and the extra bit have been de-
termined, changes in the counter sometimes generate
increments (or decrements) to propagate on to other
counters in a network. There is only one operation
performed on a counter, and it is common to all coun-
ters (i.e., adding the increments). As a result there is
little complexity in the data structure and processing
algorithm needed to emulate behavior of a gate.

Appendix B
Modelling Flip-Flops

The algorithm for evaluating and updating the
logical output values of flip-flops in the diag-
nostic emulation technique uses counters to
represent flip-flops and represents a network of
flip-flops by an identical network of counters.
Of course, to distinguish the input from the
output connections of each counter, the net-
work of counters contains information about
the direction of signal flow. As its inputs
change, a counter’s value is changed as a func-
tion of its current value as well as the input
changes. However, only some of the possible
changes of a counter correspond to a change of
a flip-flop’s output value. When such changes
occur, their effects are propagated to other
counters indicated by the network. There-
fore, the algorithm’s task is simply to change
(according to a transition rule) the values of
indicated counters and to indicate which, if
any, other counters are to be changed in turn.
Thus, repetition of the algorithm provides an
emulation of the behavior, varying with the
passage of time, of a network of interacting
flip-flops.

The reader should notice the wording here
is similar to that in the introductory para-
graph of appendix A on modelling gates. The
similarity is intended to emphasize the com-
monality of the algorithms and the fact that
the two modelling schemes can readily be com-
bined to emulate networks composed of a mix-
ture of gates and flip-flops (and other types of
devices).

32 The state machine is defined to have n+4 distinct, internal
aspects. Each aspect can be only TRUE or FALSE (but not
both simultaneously); hence, each state is uniquely described
by a binary integer with n+4 bits. Obviously, the integer also
serves as an index on the states. The input variable to the
state machine is defined to be a binary integer of n bits. The
state transition rule is defined in two steps. First, each of the
first n aspects (i.e., the equivalent bits) of the state index is
changed (i.e., either TRUE — FALSE or FALSE — TRUE, as
appropriate) if and only if the corresponding bit of the input
variable is TRUE. (Recall that a signal transmitted to a device
indicates whether or not a change has occurred to the variable
in question and not the value of the variable.) Secondly, the
possible change in each of the remaining four aspects (i.e.,
the remaining 4 bits of the state index) is determined as a
function of the integer values of the state index and the input
variable. Thus, the values of the input variable and the state
index together determine a new value for the index.

The representation of flip-flops as counters is
l ased on the observation that a flip-flop (whether
.-K, D, R-S, master-slave, with or without preset
&nd/or clear, or triggered on the leading or trailing
¢dge of a clock (Cl) signal) can be considered as a
¢pecial case of a hypothetical flip-flop with n inputs
\vhose behavior can be described by a comprehensive
{ruth table and, in turn, modelled as a finite-state
1nachine with 2714 states and a compact state tran-
cition rule.3? That is, given a hypothetical flip-flop
type, a state machine can be used to model the be-
] avior of a flip-flop by (1) equating the n inputs, the
two outputs, and two internal, binary-valued quan-
{ities (which have meaning in the case of a master-
clave flip-flop) to the n + 4 aspects of the flip-flop
<tate machine; (2) equating the occurrence of changes
(whether they appear as increments or decrements)
of the flip-flop’s inputs to TRUE (i.e., 1) values of
the corresponding bits of the machine’s n-bit input
--ariable; and (3) using the flip-flop’s truth table to
.letermine the function that maps the state index and
‘nput variable into new values for the remaining four
aspects. All the useful edge-triggered types of flip-
‘lops appear to be included in the truth table in ta-
sle B1; the truth table thus defines a single flip-flop
tate machine with n = 5.33 Specific flip-flop types
wre generated from the combined truth table by an
\ppropriate choice of initial values for the unused in-
Hut variables and the option parameters.34

For example, consider the simple D flip-flop in
jgure B1. (Of course, the flip-flop could be imple-
mented as a network of gates as in figure B1(b)—if

33 For practical purposes n = 8, since three additional quan-
tities, option selection parameters, are needed. Although not
inputs, they can be considered inputs which do not change
from their initial condition. They indicate when flip-flops
are {or are not) master-slave types and/or types that have
outputs that are indeterminate in some circumstances.

34 Actually, the basic flip-flop device modelled in the diag-
nostic emulation technique corresponds to only half of a flip-
flop, i.e., it corresponds to only one output’s value, either the
Q or the g value. The lowercase 7 is used instead of @ to
emphasize this point. Either output can be obtained by the
same algorithm by simply reversing the P and C input lines
and, similarly, the J and K input lines—as the symmetry in
the truth table in table Bl reveals. When needed, the other
output’s value is usually obtained by simply using the com-
plement of the computed output’s value. (The data structure
available in the diagnostic emulation scheme for describing
a network of devices contains a convenient capability for in-
verting (i.e., complementing) a signal going from one device
to another.) For flip-flop types for which there is a possibility
of output values that are not complements of each other (e.g.,
see row 1 in table B1), the two output values of the flip-flop
must be separately computed through the use of two “halves”
of a flip-flop.

15

E@% A NAND
[
NAND NAND

(b) Gate network for D flip-flop.

1/

Figure B1. Components of D flip-flop.

16

ol

pjcijal @

* T T

ojllof 1

1011 0

*Don't care.

TInactive edge of «lock signal.
tNo change.

L Active edge of clack signal.

(c) Truth t.ble.

(d) State transition diagram.

Figure B1. Corcluded.

17

Table B1. Combined Truth Table for Flip-F lops

Inputs Parameters Internals Outputs
J K
Row | P | C | (orD) | (orD) | Cl [0 | a | B | iQu Gnt1 | @nt+1 | Tngq
1 0 0 * * * * * * 1 1 1 1
2 0 1 * * * * * * 1 0 1 0
3 1 0 * * * * * * 0 1 0 1
4 1|1 * * T 1o lo |o * * t t
5 1 1 0 0 ! 0 0 0 * * t t
6 1 1 0 1 ! 0 0 0 * * 0 1
7 1 1 1 0 1 0 0 0 * * 1 0
8 1 1 1 1 1 0 0 0 * * Q@n Gn
9 1 1 1 1 l 0 0 1 * * o o
10 1 |1 * * 1 1 0 |o t t iQn T,
11 1 1 * * 1 1 1 0 i 3 Qn 1Qy
12 1 1 0 0 1 1 0 0 t t t t
13 1 1 0 1 l 1 0 0 0 1 t t
14 1 1 1 0] 1 0 0 1 0 1 1
15 1 1 1 1 } 1 0 0 1Qn Qp 1 1
|16 1 |1 1 1 L1 o |1 *x *x # t
*Don’t care.
Tnactive edge of clock signal.
tNo change.
! Active edge of clock signal.
**Indeterminate.

No change—indeterminate if J and/or K changed during time interval 6¢ before active edge of clock.

18

there were a need.)3 The truth table in table Bl
generates the same limited, state-machine behavior
as the D flip-flop’s truth table (fig. B1(c)) if the 0, a,
and (3 parameters are preset to 0, the P and C in-
puts are preset to 1, and the K input is considered
to always equal D in the absence of an actual D in-
put. Also note that for a D flip-flop that is not a
master-slave type, the internal binary quantities are
irrelevant. Hence, only rows 4, 6, and 7 in table B1
are applicable and, for the D, Cl, Q, and g variables,
they are clearly equivalent to the D flip-flop’s truth
table. Furthermore, with the assumption that the g
output can only be the complement of the @ out-
put, g is redundant and only 2n+1 states are needed
to describe the D flip-flop state machine. Moreover,
since n = 2 (i.e., the only inputs are D and Cl; D is

redundant),
2Tl+1 — 23

Hence, a 3-bit integer, corresponding to the triplet of
signals D, Cl, and Q, suffices to index (and describe)
the states. Since it is irrelevant (i.e., a matter of
convention) whether the leading or the trailing edge
of the Cl signal is the active edge, assume for the
purpose of this example that the 1 — 0 transition
is the active edge. From the truth table, one can
construct the diagram in figure B1(d), depicting all
the states and transitions among the states. The
input signals whose changes caused the transitions
are indicated along the arcs connecting the states.
In effect, the “causes” correspond to the values of
the input variable of the machine.3¢ (Note that only
those transitions which cross the vertical barrier in
the center of the diagram correspond to changes of
the flip-flop’s output value).

In a similar manner, a J-K flip-flop with direct
clear input (see truth table in table B2) can be

35 If there were a need to examine the behavior of the flip-
flop in greater detail (e.g., to observe faulty behavior), the
network of gates in figure B1(b) could be emulated by only
the gate modelling capability (described in appendix A) of
the diagnostic emulation scheme. Of course, in a network of
flip-flops this would be done with discretion, since it increases
the number of primitive devices being emulated—in this case
of a D flip-flop, for example, by a factor of 6 to 1.

36 Of course, for any interval of time during which no change
occurs to the inputs, the state can be considered either to
remain unchanged or to transition to itself. That is, there
is no behavior to be modelled between transition events;
otherwise, there would be additional recognizable states of
the finite-state machine and something, perhaps the passage
of time, causing changes from these states. If one wished to
describe the process of transition from one state to another in
greater detail, one could define additional tiers of states with
different transition rules. For example, the process of a device
failing in the time interval between normal, state transitions
could be modelled this way.

represented by presetting the o, o, and 3 parameters
tc. 0 and the P variable to 1 and by choosing the
0 — 1 transition to be the active edge of the clock
siznal. Rows 3 to 8 (excluding 4) of the combined
truth table (table B1) become the only applicable
rcws and have the same behavior as the J-K flip-
flop’s truth table. The behavior of other useful flip-
fip types can be modelled from the hypothetical flip-
flop’s truth table. With such equivalences in mind,
a network of flip-flops can be conceptually replaced
b+ a network of properly initialized flip-fiop state
machines corresponding to the combined truth table.

Table B2. Truth Table for J-K Flip-Flop With
Clear Direct Input

C J K Cl @n+1 Tn+1
0 * E 3 £ 3 0 1

1 0 0 1 Qn qn
1 0 1 1 0 1

1 1 0 1 1 0

1 1 1 1 n Q@n

*Don’t care.
TInactive edge of clock signal.

A flip-flop state machine, in turn, can be repre-
sonted by a counter whose content is the value of the
state index (or, equivalently, the state descriptor) at
eny given moment. Changes to the counter value
reed (indeed must) only be made when the value of
the input variable is nonzero (i.e., only when a transi-
tion event occurs; see footnote 36 for exceptions) and
are then made in accordance with the state transition
rules of the flip-flop state machine. That is, changes
1o the first n (the input) bits of the state index are
ctetermined directly by the input variable; each is
¢imply complemented when the corresponding bit of
the input variable indicates a change. Changes to the
liits corresponding to the output (and internal) quan-
-ities are determined as a function of the value of the
. ounter and the input variable, and when a change to
.n output quantity does occur, that change is prop-
gated to other devices as indicated by the network,
ippearing either as an input variable indicating a
‘hange to a particular input (if the device is another
Hip-flop) or as an increment or decrement (if the de-
ice is a gate). The function is determined, of course,
‘rom the flip-flop state transition diagram; moreover,

t only needs to indicate which transitions correspond
0 a change. For example, the state transition dia-
sram for the D flip-flop illustrated in figure B1(d) can
e transformed into the computationally more con-
venient matrix form in figure B2(a), in which tran-
sitions corresponding to output changes are marked

19

Input Change

Cl D DC1

000 010 100 110

001 011 101 111

010 000 110 101+

State 011 000- 111 101
100 110 000 010

101 111 001 011

110 101+ 010 000
111 101 011 000-

(a) Device.

€1 ocl
011 111 -

State 80
110 010 +

(b) Truth table.

Figure B2. State transition matrix and compacted function for D flip-flop.

by a “+” or a “~” (i.e., increments or decrements).
Hence, in this case, all the information needed to
specify the function is contained in figure B2(b)—a
useful reduction in data structure. Further, if the
devices (i.e., counters) which provide the inputs to a
flip-flop are evaluated singly and their outputs prop-
agated singly, then an input variable to a state ma-
chine’s counter will contain an indication of change to
only one bit of the counter. That is, only n columns
(one for each input signal) of the reduced matrix are
needed. In the D flip-flop example, this corresponds
to saying that none of the transitions labeled DCI will
ever occur. Hence, only the Cl column in figure B2
is needed to specify the transition function. Thus,
the state transition function reduces to a search of a
one-column table. If the value of the counter is found
in the table, the output (i.e., Q) bit of the counter
is complemented and the AQ propagated; if not, no
change is made and no propagation occurs. In a sim-

20

ilar manner, the combined truth table in table Bl
implies a complex flip-flop state transition diagram
with an equivalent state transition matrix and a com-
pact function statement that can be implemented as
a simple table search.

In summary, a flip-flop can be modelled as a flip-
flop state machine. In turn, the flip-flop state ma-
chine is naturally represented as a counter with n + 4
bits. After an initial value for the counter has been
determined, changes (as a function of the counter
value and an input variable) to the counter some-
times are accompanied by a need to propagate a sig-
nal to other devices in a network. The only oper-
ation performed on the counter is bit complement-
ing; the function consists of scanning one of a half
dozen tables of few entries. As a result, there is lit-
tle complexity in the data structure and processing
algorithm needed to emulate behavior of a flip-flop.

Appendix C
Modelling Tri-State Devices

The algorithm for emulating tri-state de-
vices in the diagnostic emulation technique is
a combination of the algorithm for emulating
gates (described in appendix A) and, with a
slight modification, the algorithm for emulat-
ing flip-flops (described in appendix B). Ac-
cordingly, tri-state devices are represented by
counters (as are gates and flip-flops), and a
network of tri-state devices (and, of course, of
gates, flip-flops, and tri-state devices) is rep-
resented by an identical network of counters.
Also similarly, only some of the changes to
the counter, caused by changes of its inputs,
correspond to changes of the tri-state device’s
output values; when such changes occur their
effects are propagated to other devices (i.e.,
counters) indicated by the network. Thus, the
function of the algorithm is the same as that
of the gate and flip-flop algorithms, namely, to
change the value of a counter according to a
transition rule and to indicate which, if any,
other counters of the network are to change as
a consequence.

Modelling of a tri-state device in the diagnostic
emulation technique is based on the observation that
the third state of a tri-state device effectively discon-
nects the tri-state device from the device(s) to which
its output signal would otherwise propagate, and that
forcing and holding the tri-state device’s output to
TRUE (or FALSE, depending upon the particular
device) logically achieves the same (disconnection)
effect. Thus, for modelling purposes, the third state
corresponds to the condition of being stuck at one of
the normal, binary values. There are two methods
for doing this in the diagnostic emulation technique.
One method consists of substituting a two-input gate
(an AND or OR gate, depending upon the desired
value of the disabled output) for a tri-state device in
a network description. The second method replaces
a tri-state device with a hypothetical gate-flip-flop
device (for which the disabled output value d is a
parameter).

The two-input gate is the simpler and relatively
obvious method. The two inputs to the tri-state de-
vice (inputs G and E in fig. C1(a)) become the inputs
to the gate that replaces the tri-state device. No spe-
cial algorithm is needed since the normal gate mod-
elling algorithm (see appendix A) already suffices to
emulate a gate. An OR gate is chosen when the out-
put of the modelled tri-state device must be TRUE to
simulate disconnection. If the tri-state device is of a

sort that disconnects when its enabling input signal is
TRUE, then it is immediately consistent with model-
ling by an OR gate and the enabling input need only
be connected as an input to the OR gate. If, however,
the tri-state device is of a sort that disconnects when
its enabling input signal is FALSE, then to be consis-
tent with modelling by an OR gate the enabling input
signal must be inverted before connection to the OR
gate. (The data structure available in the diagnos-
tic emulation technique for describing a network of
devices contains a convenient capability for inverting
(i.e., complementing) a signal at the input to a de-
vice gate or otherwise.) On the other hand, if the
output of the tri-state device is to be FALSE when
the device is disconnected, then the tri-state device
is represented by an AND gate. In this case’and in a
manner analogous to that of the OR gate just men-
tioned, a tri-state device that is disconnected when
its enabling input signal value is FALSE is consistent
with representation by an AND gate and needs no
inversion of the enabling input signal, while one that
disconnects when the enabling input signal value is
TRUE is inconsistent and requires that the enabling
input signal be inverted.

The hypothetical gateflip-flop method is some-
what more complex, but it provides an additional
capability-—modelling of stuck-at faults. The method
is based on the observation that a tri-state device can
be described by a truth table (as in figs. C1(a) and
C1(b)) and, therefore, modelled by a state transi-
tion diagram as are flip-flops (as described in appen-
dix B). As a consequence, the algorithm developed
for flip-flops can be used by adjoining a tri-state de-
vice’s enabling input signal as simply another input
signal to the hypothetical flip-flop’s comprehensive
truth table. Since all the other inputs to a flip-flop
are available to represent the G input of a tri-state
device, the counter for holding the state index (see
appendix B) is available for use as the counter for
the gate algorithm (see appendix A). That is, the
implementation details of the algorithms allow rep-
resentation of a device which operates as if it were a
gate (AND, OR, XOR, etc.) with an enabling input
signal. Such a device can then be used to repre-
sent a conventional tri-state device (e.g., a one-input
OR gate with an extra input signal, the enabling
signal)—or it can be used to represent a conventional
gate which can be forced, by the extra signal, to a
predetermined output value (i.e., to act like a stuck-
at gate).37

37 Of course, the enabling input signal that is used to
emulate a stuck-at fault of a conventional gate does not exist
in the network being emulated. It comes from a fictitious
connection added by the diagnostic emulation technique in
order to introduce the fault.

21

22

d
G @
G| E]| Q
g1 €19
*leld
*Don't care
(a) Device. (b) Truth table.

Figure C1. Components of tri-state device.

Appendix D
Modelling Busses

In the diagnostic emulation technique, a bus line
is modelled as a gate.3® Therefore, in a network of
devices to be emulated, each bus line is replaced by
a gate whose inputs are the signals that flowed into
the bus line. The output of the gate, representing
the signal seen on the bus line, becomes the signal
source for all those device inputs that were connected
to the bus line. The gate, of course, does not exist in
the network being emulated; however, it is modelled
just as any real gate of the network. Since the gate
modelling method already described in appendix A
suffices, no additional algorithmic or data structure
complexity is needed for modelling bus lines.

38 The term“bus line” can be misleading. A bus line is
a junction point, an elongated point to be sure, through
which signals travel from the outputs of some devices to the
inputs of others. The use of a bus line requires that devices
attached to it share the property that the signal representing
one of the logical (binary) values is always dominant over
any number of signals representing either the other logical
value or other possible output states of devices (in particular,
the signal corresponding to the third state of a tri-state
device; see appendix C). Given this property, a network is
ordinarily designed so that at any time all but one of the
devices that output to a bus line (i.e., junction point) are in
a nondominant (and, hence, effectively disconnected) state.
Thus, seen as a signal source, a bus line appears to track
the output value of the one device that is not necessarily
in a nondominant state. Consequently, a bus line can be
represented by either an AND or an OR gate, depending upon
whether the FALSE or the TRUE logic value is dominant.

23

References

Abramovici, Miron; Levendel, Ytzhak H.; and Menon,
Premachandran R. 1983; A Logic Simulation Machine.
IEEFE Trans. Comput.-Aided Design Integrated Circuits &
Syst., vol. CAD-2, no.2, Apr., pp. 82-94.

Anderson, T.; and Lee, P. A. 1981: Fault Tolerance—
Principles and Practice. Prentice/Hall International,
Inc.

Baker, Robert; Mangum, Scott; and Scheper, Charlotte
1988: A Fault Injection Ezperiment Using the AIRLAB
Diagnostic Emulation Facility. NASA CR-178390.

Bavuso, S. J.; and Petersen, P. L. 1985: CARE III Model
Overview and User’s Guide (First Rewmsion). NASA
TM-86404.

Becher, Bernice 1987: Diagnostic Emulation: Implementa-
tion and User’s Guide. NASA CR-178391.

Butler, Ricky W. 1984: The Semi-Markov Unreliability
Range Evaluator (SURE) Program. NASA TM-86261.

Goldberg, Harold 1981: Extending the Limits of Reliability
Theory. John Wiley & Sons, Inc.

Koike, Nobuhiko; Ohmori, Kenji; and Sasaki, Tohru 1985:
HAL: A High-Speed Logic Simulation Machine. IEEE
Design & Test Comput., vol. 2, no. 5, Oct., pp. 61-73.

Lomelino, D.; and Iyer, R. K. 1986: Error Propagation in
a Digital Avionic Processor—A Simulation-Based Study.

24

Proceedings Real- Time Systems Symposium, Inst. of Elec-
trical & Electronic Engineers, pp. 218-225.

Martin Marietta 1981: Digital Avionics Design and Reliabil-
ity Analyzer. NASA CR-181641.

Migneault, Gerard E. 1980: Software Reliability and Ad-
vanced Avionics. AFIPS Conference Proceedings, Vol-
ume 49-1980 National Computer Conference, AFIPS
Press, pp. 715-720.

Nagel, Phyllis M. 1978: Modeling of a Latent Fault Detector
in a Digital System. NASA CR-145371.

Pfister, Gregory F. 1982: The Yorktown Simulation Engine:
Introduction. ACM IEEE Nineteenth Design Automation
Conference Proceedings, IEEE Catalog No. 82CH1759-
0, Inst. of Electrical and Electronics Engineers, Inc.,
pp. 51-54.

Swern, F.; and McGough, J. 1982: Description of the Box
930 Processor at the Gate Logic Level. NASA CR-181642.

TRW Defense & Space Systems Group 1980: Advanced
SMITE Reference Manual. RADC-TR-80-66, U.S. Air
Force, Feb. (Available from DTIC as AD A087 743.)

Wensley, John H.; Lamport, Leslie; Goldberg, Jack; Green,
Milton W.; Levitt, Karl N ; Melliar-Smith, P. M.;
Shostak, Robert E.; and Weinstock, Charles B. 1978:
SIFT: Design and Analysis of a Fault-Tolerant Com-
puter for Aircraft Control. Proc. IEEE, vol. 66, no. 10,
Oct., pp. 1240-1255.

National Aeronautics ang
Space Administeanton

NASN Report Documentation Page

NASA TM-4027

1. Report No. 2. Government Accession No.

3. Recipient’s Catalog No.

4. Title and Subtitle

On the Diagnostic Emulation Technique and Its Use in
the AIRLAB

5. Report Date
October 1988

7. Author(s)
Gerard E. Migneault

6. Performing Organization Code

8. Performing Organization Report No.

L-16397

9. Performing Organization Name and Address

NASA Langley Research Center
Hampton, VA 23665-5225

10. Work Unit No.
505-66-21-03

11. Contract or Grant No.

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration
Washington, DC 20546-0001

13. Type of Report and Period Covered
Technical Memorandum

14. Sponsoring Agency Code

15. Supplementary Notes

16. Abstract

This document is intended primarily as an aid for understanding and judging the relevance of the
diagnostic emulation technique to studies of highly reliable, digital computing systems for aircraft.
Therefore, the document contains a short review of the need for and the use of the technique as well
as an explanation of its principles of operation and implementation. However, details that would be
needed for operational control or modification of existing versions of the technique are not described.

17. Key Words (Suggested by Authors(s))

Simulation

Digital simulation
Reliability analysis
Failure analysis

18. Distribution Statement
Emulation Unclassified-Unlimited

Subject Category 60

19. Security Classif.(of this report)
Unclassified

Unclassified

20. Security Classif.(of this page)

21. No. of Pages | 22. Price
27 AQ2

NASA FORM 1626 ocrT 86

NASA-Langley, 1988

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

